for-in loop
│
English (en) │
français (fr) │
日本語 (ja) │
русский (ru) │
This iterates over a collection, but where a basic for-loop uses a numerical index counter, a for-in loop instead retrieves collection elements into the counter variable for immediate use. For-in works on strings, arrays, sets, and any other custom collection that implements the required iterators. Looping over an empty collection does nothing. The counter variable can not be modified inside the loop.
The for-in loop construct is supported in Delphi from Delphi 2005 onwards. It was implemented in FPC 2.4.2.
The official documentation is here: Reference guide chapter 13
Delphi and FPC implementation
A for in loop has the following syntax:
String loop
procedure StringLoop(S: String);
var
C: Char;
begin
for C in S do
DoSomething(C);
end;
Array loop
procedure ArrayLoop(A: Array of Byte);
var
B: Byte;
begin
for B in A do
DoSomething(B);
end;
Set loop
type
TColor = (cRed, cGren, cBlue);
TColors = set of TColor;
procedure SetLoop(Colors: TColors);
var
Color: TColor;
begin
for Color in Colors do
DoSomething(Color);
end;
Loop variables are temporary copies of the container value
The loop variable in a for-in loop is a copy of the value that is stored inside a container over which the for-in loop is performed.
program tempcopy;
{$IFDEF FPC}
{$mode Delphi}
{$ENDIF}
uses SysUtils;
type
PointerAddress = NativeUInt;
var
pIntArr: Pointer;
IntArr: Array of Integer;
procedure ArrayLoop(const AArr: Array of Integer);
var
i: Integer;
begin
pIntArr := @AArr;
writeln('Argument: ', PointerAddress(pIntArr)); // <-- same memory address as Item 1
pIntArr := @i;
writeln('Local loop variable: ', PointerAddress(pIntArr)); // <-- local temporary variable i
for i in AArr do
begin
pIntArr := @i;
writeln('Loop variable: ', PointerAddress(pIntArr)); // <-- local temporary variable i
end;
end;
begin
// allow 3 items in the array
SetLength(IntArr, 3);
pIntArr := @pIntArr;
writeln('global pIntArr address: ', PointerAddress(pIntArr));
// IntArr is separate variable that points to first element
pIntArr := @IntArr;
writeln('global IntArr address: ', PointerAddress(pIntArr));
pIntArr := @IntArr;
writeln('IntArr points to: ', PointerAddress(pIntArr^));
// addresses of the single items
pIntArr := @IntArr[0];
writeln('Item 1: ', PointerAddress(pIntArr)); // <-- memory address of the first item
pIntArr := @IntArr[1];
writeln('Item 2: ', PointerAddress(pIntArr));
pIntArr := @IntArr[2];
writeln('Item 3: ', PointerAddress(pIntArr));
writeln('array loop');
ArrayLoop(IntArr);
end.
Traversing container
To traverse a container class you need to add an enumerator for it. An Enumerator is a class structured according to the following template:
TSomeEnumerator = class
public
function MoveNext: Boolean;
property Current: TSomeType;
end;
There are only 2 things required for the enumerator class: a MoveNext method which asks the enumerator to step forward and a Current property which can return any appropriate type.
Thereafter you need to add the magic GetEnumerator method to the container class which returns an enumerator instance.
For example:
type
TEnumerableTree = class;
TTreeEnumerator = class
private
FTree: TEnumerableTree;
FCurrent: TNode;
public
constructor Create(ATree: TEnumerableTree);
function MoveNext: Boolean;
property Current: TNode read FCurrent;
end;
TEnumerableTree = class
public
function GetEnumerator: TTreeEnumerator;
end;
constructor TTreeEnumerator.Create(ATree: TEnumerableTree);
begin
inherited Create;
FTree := ATree;
FCurrent := nil;
end;
function TTreeEnumerator.MoveNext: Boolean;
begin
// some logic to get the next node from a tree
if FCurrent = nil then
FCurrent := FTree.GetFirstNode
else
FCurrent := FTree.GetNextNode(FCurrent);
Result := FCurrent <> nil;
end;
function TEnumerableTree.GetEnumerator: TTreeEnumerator;
begin
Result := TTreeEnumerator.Create(Self);
// Note: the Result is automatically freed by the compiler after the loop.
end;
After this you are able to execute the following code:
procedure TreeLoop(ATree: TEnumerableTree);
var
ANode: TNode;
begin
for ANode in ATree do
DoSomething(ANode);
end;
You will find that several basic classes (such as TList, TStrings, TCollection, TComponent ...) already have built-in enumerator support.
It is also possible to make any class enumerable if you implement the following interface in your enumerable container class:
IEnumerable = interface(IInterface)
function GetEnumerator: IEnumerator;
end;
Where IEnumerator is declared as:
IEnumerator = interface(IInterface)
function GetCurrent: TObject;
function MoveNext: Boolean;
procedure Reset;
property Current: TObject read GetCurrent;
end;
Multiple enumerators for one class
You can add additional enumerators to classes, objects and records.
Here is an example of adding an enumerator which traverses a TEnumerableTree in reverse order:
type
TEnumerableTree = class;
TTreeEnumerator = class
...for traversing in order, see above...
end;
TTreeReverseEnumerator = class
private
FTree: TEnumerableTree;
FCurrent: TNode;
public
constructor Create(ATree: TEnumerableTree);
function MoveNext: Boolean;
property Current: TNode read FCurrent;
function GetEnumerator: TTreeReverseEnumerator; // returns itself
end;
TEnumerableTree = class
public
function GetEnumerator: TTreeEnumerator;
function GetReverseEnumerator: TTreeReverseEnumerator;
end;
...see above for an implementation of the TTreeEnumerator...
constructor TTreeReverseEnumerator.Create(ATree: TEnumerableTree);
begin
inherited Create;
FTree := ATree;
end;
function TTreeReverseEnumerator.MoveNext: Boolean;
begin
// some logic to get the next node from a tree in reverse order
if FCurrent = nil then
FCurrent := FTree.GetLastNode
else
FCurrent := FTree.GetPrevNode(FCurrent);
Result := FCurrent <> nil;
end;
function TTreeReverseEnumerator.GetEnumerator: TTreeReverseEnumerator;
begin
Result := Self;
end;
function TEnumerableTree.GetReverseEnumerator: TTreeReverseEnumerator;
begin
Result := TTreeReverseEnumerator.Create(Self);
// Note: the Result is freed automatically by the compiler after the loop.
end;
After this you are able to execute the following code:
procedure TreeLoop(ATree: TEnumerableTree);
var
ANode: TNode;
begin
for ANode in ATree.GetReverseEnumerator do
DoSomething(ANode);
end;
FPC extensions
The following code examples illustrate constructs that are implemented only by FPC, constructs which are not supported by Delphi.
Traversing enumeration and subrange types
In Delphi, it is not possible to traverse either enumerated types or subrange types, whereas in Free Pascal we can write the following:
type
TColor = (clRed, clBlue, clBlack);
TRange = 'a'..'z';
var
Color: TColor;
ch: Char;
begin
for Color in TColor do
DoSomething(Color);
for ch in TRange do
DoSomethingOther(ch);
end.
An example of this can further be demonstrated by the following code taken from bugreport 0029147, where the type system is disabled because a hardcast is used on a value that is not necessarily part of the enum value:
type
TSomeEnums = (One, Two, Three);
resourcestring
SOne = 'One ape';
STwo = 'Two apes';
SThree = 'Three apes';
const
SSomeEnumStrings: array [Low(TSomeEnums)..High(TSomeEnums)] of string = (
SOne, STwo, SThree);
var
i: Integer;
SE: TSomeEnums;
begin
for i := 0 to 4 do begin
SE := TSomeEnums(i); // hardcast. i can be higher than 2, but the type system is now disabled
WriteLn(SSomeEnumStrings[SE]);
end;
end.
The programmer instructs the compiler that i is of the enum type and the compiler will not check any further, assuming that the programmer knows best.
Of course the programmer is wrong and the compiler would have known better...
By traversing the enumerated type with for in do the hard cast is superfluous and the code becomes type safe:
type
TSomeEnums = (One, Two, Three);
resourcestring
SOne = 'One ape';
STwo = 'Two apes';
SThree = 'Three apes';
const
SSomeEnumStrings: array [Low(TSomeEnums)..High(TSomeEnums)] of string = (
SOne, STwo, SThree);
var
SE: TSomeEnums;
begin
for SE in TSomeEnums do
WriteLn(SSomeEnumStrings[SE]);
end.
Declaring enumerators
It is also not possible in Delphi to add an enumerator without modifying the class, nor to add an enumerator to the non-class/object/record/interface type. FPC makes this possible using the new syntax operator type Enumerator. As in the following example:
type
TMyRecord = record F1: Integer; F2: array of TMyType; end;
TMyArrayEnumerator = class
private
function GetCurrent: TMyType;
public
constructor Create(const A: TMyRecord);
property Current: TMyType read GetCurrent;
function MoveNext: Boolean;
end;
// This is new built-in operator.
operator Enumerator(const A: TMyRecord): TMyArrayEnumerator;
begin
Result := TMyArrayEnumerator.Create(A);
end;
var
A: MyRecord;
V: TMyType
begin
for V in A do
DoSomething(V);
end.
Traversing UTF-8 strings
As a particularly useful example, the above extension allows very efficient traversal of UTF-8 strings:
uses
LazUTF8;
interface
type
{ TUTF8StringAsStringEnumerator
Traversing UTF8 codepoints as strings is useful when you want to know the
exact encoding of the UTF8 character or if you like to use string
constants in your code.
For security reasons you should use the codepoints values (cardinals) instead.
If speed matters, don't use enumerators. Instead use the PChar directly as
shown in the MoveNext method and read about UTF8. It has some interesting features. }
TUTF8StringAsStringEnumerator = class
private
fCurrent: UTF8String;
fCurrentPos, fEndPos: PChar;
function GetCurrent: UTF8String;
public
constructor Create(const A: UTF8String);
property Current: UTF8String read GetCurrent;
function MoveNext: Boolean;
end;
operator Enumerator(A: UTF8String): TUTF8StringAsStringEnumerator;
var
Form1: TForm1;
implementation
operator Enumerator(A: UTF8String): TUTF8StringAsStringEnumerator;
begin
Result := TUTF8StringAsStringEnumerator.Create(A);
end;
{ TUTF8StringAsStringEnumerator }
function TUTF8StringAsStringEnumerator.GetCurrent: UTF8String;
begin
Result:=fCurrent;
end;
constructor TUTF8StringAsStringEnumerator.Create(const A: UTF8String);
begin
fCurrentPos:=PChar(A); // Note: if A='' then PChar(A) returns a pointer to a #0 string
fEndPos:=fCurrentPos+length(A);
end;
function TUTF8StringAsStringEnumerator.MoveNext: Boolean;
var
l: Integer;
begin
if fCurrentPos<fEndPos then
begin
l:=UTF8CharacterLength(fCurrentPos);
SetLength(fCurrent,l);
Move(fCurrentPos^,fCurrent[1],l);
inc(fCurrentPos,l);
Result:=true;
end else
Result:=false;
end;
{ TForm1 }
procedure TForm1.FormCreate(Sender: TObject);
var
s, ch: UTF8String;
i: SizeInt;
begin
s:='mäßig';
// using UTF8Length and UTF8Copy this way is slow, requiring O(n)^2
for i:=1 to UTF8Length(s) do
writeln('ch=',UTF8Copy(s,i,1));
// using the above enumerator is shorter and quite fast, requiring O(n)
for ch in s do
writeln('ch=',ch);
end;
Using any identifiers instead of builtin MoveNext and Current
In Delphi you must use a function with the name 'MoveNext' and a property with the name 'Current' in enumerators. With FPC you can choose whatever names you wish. This is enabled by the use of the enumerator modifier, with the syntax 'enumerator MoveNext;' and 'enumerator Current;' modifiers. As in the following example:
type
{ TMyListEnumerator }
TMyListEnumerator = object
private
FCurrent: Integer;
public
constructor Create;
destructor Destroy;
function StepNext: Boolean; enumerator MoveNext;
property Value: Integer read FCurrent; enumerator Current;
end;
TMyList = class
end;
{ TMyListEnumerator }
constructor TMyListEnumerator.Create;
begin
FCurrent := 0;
end;
destructor TMyListEnumerator.Destroy;
begin
inherited;
end;
function TMyListEnumerator.StepNext: Boolean;
begin
inc(FCurrent);
Result := FCurrent <= 3;
end;
operator enumerator (AList: TMyList): TMyListEnumerator;
begin
Result.Create;
end;
var
List: TMyList;
i: integer;
begin
List := TMyList.Create;
for i in List do
WriteLn(i);
List.Free;
end.
Proposed extensions
Get enumerator Position if available
It is impossible to extract any information from the iterator except the current item. Sometimes other data, such as the current index, might be useful:
type
TUTF8StringEnumerator = class
private
FByteIndex: Integer;
FCharIndex: Integer;
public
constructor Create(const A: UTF8String);
function Current: UTF8Char;
function CurrentIndex: Integer;
function MoveNext: Boolean;
end;
operator GetEnumerator(A: UTF8String): TUTF8StringEnumerator;
begin
Result := TUTF8String.Create(A);
end;
var
s: UTF8String;
ch: UTF8Char;
i: Integer;
begin
// Inefficient, as discussed above
for i := 1 to Length(s) do
Writeln(i, ': ', ch[i]);
// Ok, but ugly
i := 1;
for ch in s do begin
Writeln(i, ': ', ch);
Inc(i);
end;
// Proposed extension
for ch in s index i do
Writeln(i, ': ', ch);
// Proposed extension for traversing backwards (equivalent to downto)
for ch in reverse s do
Writeln(i, ': ', ch);
// With proposed index extension
for ch in reverse s index i do
Writeln(i, ': ', ch);
end.
Note that index could be designed to return an arbitrary type (i. e. not necessarily an integer). For example, in the case of tree traversal, the index might return an array of nodes describing the path from the tree root to the current node.